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ALGEBRAIC METHODS APPLIED TO NETWORK

RELIABILITY PROBLEMS

Douglas R. Shier

David E. Whited

Abstract. An algebraic structure underlyingnetwork reliability problems is presented

for determining the 2-terminal reliability of directed networks. An iterative algorithm is

derived from this algebraic perspective to solve the (s, j)-terminal reliability problem

simultaneously for all nodes j. In addition to providing an exact answer (in the form of a

reliability polynomial), the algorithm also yields a nondecreasing sequence of

approximate solutions guaranteed to be lower bounds on the exact solution. Empirical

results, presented for two different implementations of the algorithm, show that useful

approximate solutions can be obtained in a reasonable amount of computation time.
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1. Introduction

The problem of determining the reliability of an existing or proposed

communication system has received considerable attention in the engineering,

statistical, and operations research literature [1, 5, 9]. For example, it is important to

assess the probability that a message sent from a given source arrives at its destination,

when the components comprising the system are subject to failure. Unfortunately, most

reliability problems of any substance are now known to be NP-hard or #P-complete [4,

17, 18, 27]. As a result, researchers have focused on special network structures

(where polynomial-time algorithms are possible), or have resorted to simulation.

A number of special classes of undirected networks have recently been analyzed

with success. Polynomial-time algorithms are now available for calculating certain

reliability measures in series-parallel [21], inner-cycle-free [14], inner-four-cycle-free [14],

and cube-free [15] planar graphs. Provan [16] has shown, however, that the problem of

determining source-to-terminal reliability remains #P-complete for the general class of

planar graphs. In order to analyze more complex network topologies, the idea of pivotal

decomposition [5] together with polygon-to-chain reductions [28] can be used to

decompose the original problem into smaller subproblems.

Similar results and tools are not as available in the case of directed networks. The

only significant types of directed networks that are known to admit a polynomial-time

algorithm are "basically-series-parallel" networks [2, 3]. Also, unlike the case for

undirected networks, certain simplifications are not available when carrying out pivotal

decomposition in the directed case [1]. Nor does there exist an "optimal" factoring

algorithm, such as that demonstrated for undirected networks [19].

This paper exploits the underlying algebraic structure of network reliability

problems to produce a general iterative algorithm, applicable to arbitrary directed

networks. While not polynomially-bounded, it is able to generate reasonable

,Z~k ,,=t ;\,, .



2

approximations to exact network reliability with a modest amount of computation.

2. Algebraic Structure

Suppose that G = (N, E) is a directed network with node set N and edge set E, in

which nodes do not fail but edges fail independently of one another. The reliability of

edge e (the probability that edge e functions) is denoted by Pe. Nodes s and t designate

the specified source and terminal of G, and we are interested in calculating the

2-terminal reliability Rst(G):

Rst(G) = Pr {there exists a functioning path from s to t in G).

Associate with each edge k e E a variable xk. Then the reliability polynomial

Fst(x) = Fst(x, .... , xr) associated with s and t is a polynomial in x1 , ... , xr such that if the

numerical values Pl, -.., Pr are substituted for the corresponding variables x1 , ... , xr then

the resulting value is the probability that a functioning path exists from node s to node t.

(If the xi's were simply Boolean variables, this polynomial would be identical with the

structure function of the system [5].) The reliability polynomial can be concisely

expressed using two operations 0 and 0 defined on polynomials.

To begin, let

a a 1 a2  ar
T=X1 x2 ... xr

denote a monomial term, where each ai e 10,1). The operation 0 when applied to terms

Ta and Tb yields the term Tc where ci = max (ai, bi}. This operation is extended to

arbitrary polynomials by distributivity. The operation G is defined on polynomials f(x)

and g(x) using

f(x) @ g(x) = f(x) + g(x) - f(x) 0 g(x).

Operations related to (@ and 0 were apparently first suggested by Mine [13] and by

.. ~~~~- 6. 0 I ~5~
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Kim et al. [10]. More recently Gondran and Minoux [8], and Shier [24], have formulated

network reliability using the operations $ and 0 defined above.

Let S denote the set of all polynomials that can be formed from monomial terms Ta,

Tb,... by finite applications of the operations e and ®. Then it can be demonstrated [24]

that (S, @, 0) forms a distributive lattice with smallest element 0 (the zero polynomial)

and largest element 1 (the unit polynomial). Suppose that Pst is the set of simple paths

from node s to node t in G. Define the value v(P) of path P to be the product, with respect

to ®, of the edge variables along the path:

v(P) = 0 17 {xk: ke P1.

Then the reliability polynomial Fst(x) can be expressed as

(1) Fst( ) =' 9 Z{v(P): P e Pst}.

As an illustration, consider the standard bridge network in Fig. 1 having s = 1 and t = 4.

Since there are four simple paths extending from s to t, equation (1) becomes

Fst(X) = x1x4 E x1x3x5 @ x2x4x6 D x2x5 .

Equation (1) is just the standard expression for the inclusion-exclusion formula, applied

to paths in the network [1]. Expanding such an expression, using the definitions of $

and 0, and then substituting numerical values Pk for the corresponding variables xk

yields Rst(G).

A number of techniques have been developed to calculate the quantity (1) for a

general algebraic structure (S, @, 0) satisfying appropriate properties [6, 8]. These

techniques can all be viewed as different methods of solving the system of equations

(2) z = z M s ,

which is linear in the operations @ and 0. Here M = (mij) is the weighted adjacency

matrix for G, with mij = xk for k = (i, j) e E and mij = 0 otherwise. Also, es denotes the

s-th unit row vector. An (extremal) solution z to these equations is known [6] to satisfy

.. r I ,
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zj = Fsj(x) for all j e N. Thus by solving such equations to find Fst(x), and hence Rst(G),

we also obtain the (s, j)-terminal reliabilities for all j e N. Moreover, unlike existing

methods for calculating 2-terminal network reliability based on paths [1, 11], such

algebraic methods do not need to first enumerate all simple paths joining the two

terminals [6, 8]. These paths are automatically generated in the course of solving the set

of equations (2).

A natural way of solving (2) is by means of an iterative procedure, whereby the

current estimate for z is substituted into the right-hand-side of (2), producing a new

estimate for the solution vector z. In the next section, we discuss a specific iterative

scheme for solving (2) that incorporates special data structures to streamline such

computations.

3. An Iterative Scheme

The basic idea of the iterative scheme presented here is that of passing on, at each

step, the information available at node i to each of its neighbors j, where (i, j) e E. Before

stating the general iterative scheme, the ideas will first be illustrated using the network in

Fig. 1. We will find all reliabilities zj = Fsj(x) relative to the source node s = 1.

In the algorithm, a polynomial label is associated with each node j. At any stage,

LABEL(j) will be a reliability polynomial based on a certain subset of paths from node s

to node j. In this sense, LABEL(j) corresponds to a current estimate of the solution zj to

equation (2). Initially, if there is an edge k = (s, j) e E then LABEL(j) = xk. If there is no

such edge then LABEL(j) = 0; in the case of the source node, LABEL(s) = 1. Those

nodes, apart from s, receiving a nonzero initial label are placed on a list L. In this

example, we have

~%
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j: 1 2 3 4

LABELO): 1 x1  x2  0

L: [3, 2]

Now we remove the "top" node i from L and update its neighbors j using

(3) LABEL(j) := LABEL(j) ED [LABEL(i) 0 Xk],

where k = (i, j). The above (i, j) update simply incorporates into LABEL(j) new paths from

s to j that use the edge (i, j). Any node j whose label is changed by (3) is placed on L if it

does not already appear. This step removes, in our example, i = 3 and updates

LABEL(2) = x1 + x2x6 - x1 x2x6

LABEL(4) = x2x5

L = [2,4]

The corresponding network, with node labels attached, is shown in Fig. 2.

At the next step, node i = 2 is removed from the top of L. Nodes 3 and 4 are then

updated, and node 3 is added to L:

LABEL(4) = x2x5 + x1 x4 - x1 x2x4x5 + x2x4x6 - x2x4x5x6

- xlx2x4x6 + x1x2x4x5x6

LABEL(3) = x2 + xl x3 - x1x2x3 + x2x3 x6 - x2x3 x6

- xl x2x3x6 + x1x2x3x6

= x2 + x1x3 - x1x2x3

L=[4,3]

This process is continued until L becomes empty. At this point, the polynomial

label on any node j represents zj = Fsj(x). Table 1 shows the final labels for our

example, together with the value obtained by substituting the common edge reliability p

for all xk.
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Table 1

F 5 i(x) Rsj(G), Pk=p

j=1 1 1

j =2 x + x2x6 -X1 x2x6  p + p2 p3

j=3 2+xx-x x3 p+ P2 - P

= 4 x2x5 - x 1 x2x4x6 + X1 x2x4x5x6  2p2 + 2p3 - 5p4 +2p5

+ x2x4x6 - x2x4x5x6 + x1 x4

- I x2x4x5 + x 1x3x5 - x1 x3x4x5

- Xlx 2x3x5 + xlx 2x3x4x5

The general form of the iterative procedure is specified by the following algorithm,

where L again represents the list of nodes whose labels have been changed.

1 . [Initialization]

for j *s do

if k = (s, j) e E then LABEL(J) xk

else LABELOj) 0;

LABEL(s) :=1;

L:=j: (s, j) e E];
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2. [Iterative Step]

while L* [] do

remove i from L;

for k=(i,j)e E do

T:= LABEL(j) ( [LABEL(i) e Xk];

if T * LABELO) then

LABEL(j):= T;

if j e L then enter j into L.

Upon termination of the algorithm, LABEL(J) will be the required reliability

polynomial Fsj(x). Notice that there are several ways of managing the list L. In our

example, we treated L as a queue, whereby nodes are processed in a FIFO

(first-in-first-out) manner. It is also possible to treat L as a stack, whereby nodes are

processed in a LIFO (last-in-first-out) manner. The effect of these two ways of managing

L will be examined in Section 5. First, we discuss a number of useful properties of this

iterative algorithm.

4. Properties

In this section we make use of the algebraic properties of (S, @, 0) to establish

certain properties of the iterative algorithm presented in Section 3. It will be convenient

to denote the variable attached to edge (i, j) by x. Also, the label on node j at the start of

step m will be denoted by Lm(j). Then the (i, j) update (3) of node j after step m is

expressed as

(4) Lm+ (j) = Lm(j) $ x Lm(i).

Because the label on node j represents the sum with respect to 0 of a set of simple
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s-j paths and because this set of paths can expand through subsequent updates (4), we

have

Property 1. If k 5 m then Lk(J) .D Lm(j) = Lm(J).

One important simplification derives from the following property. It states that only

the "new" information N(i) added to the label of i since i was last on L needs to be

propagated to its neighbors j.

Prooerty 2. Suppose that at step m an (i, j) update is to be performed, where the

labels on i and j are Lm(i) = Lk(i) e N(i) and Lm() with k < m. Step k represents the step

at which an (i, j) update previously occurred. Then at step m+1 the new label assigned

to j will be Lm+ 1 (j) = Lm(J) Q@ x N(i).

Proof. At step k, node j receives the label Lk+1 (j) = Lk(j) D x Lk(i). Also, since k < m

we have Lk+1(j) E9 Lm(j) = Lm(J), by Property 1. Then

Lm+ 1 (j) = Lm(j) E x Lm(i)

= [Lm(J) 9 Lk+l (j)] 9 x [Lk(i) 9 N(i)]

= [Lm(j) .9 Lk(j) e x Lk(i)] E x Lk(i) ED x N(i)

= [Lm(j) 9 Lk(j) @D x Lk(i)] x N(i)

= [Lmj) Lk+l ()] @ x N(i)

=Lm(j)9xN(i). #

Because the labels on each node will be maintained as fully expanded

polynomials (expressed using ordinary + and x), it is desirable to know when certain of

the terms in Lm(i) do not affect the label Lm(j). The following property provides one such

condition.

Eopery3. Suppose that at step m an (i, j) update is to be performed with Lm(i) =

A, + A2 +.. + Av, Lm(j) B1 9 B2 a) ... CD Bw and B1  xA1 . Then the updated label
Lm+1 (j) = Lm(J) 9 x [A2 + ..+ AV].

Proof. LetA A2 + +Avand B  B2 9 ...GBw. Then

4.

~pd *~ ~ - ' * % V \jmV \~~'V V -
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Lm+ 1 (j) = Lm(j) (D x Lm(i)

=[B 1 E B] E) x [A1 + A]

=[B 1 ED B] + [xA1 + xA]- [xA1 + xA] [B1 @ B]

=[B1 E B] + xA1 + xA -xAI[B 1 + B- B1 B] -xA [B1 9 B]

= [B 1 E B] + xA1 + xA - xA1 - xA1 B + xA1 B - xA [B1 9 B]

= Lm(J) + xA - xA LmJ)

Lm( ) @ x [A2 +... + Av].

Together, Properties 2 and 3 show that certain "cancellations" in the update step

(4) of the iterative scheme can be predicted in advance, and thus unnecessary

computation can be avoided. The next property demonstrates that the approximations to

Rsj(G ), derived from successive labels at node j, are monotone nondecreasing. The

notation Rm(J) indicates the value obtained by substituting numerical values Pr for xr into

the polynomial Lm(J).

Property 4. If k _. m then Rk(j) _ Rm(j).

Proof. Since k < m we can express Lk(j) = T1 @ T2 E... E Tv and Lm(j) = T1 @

T2 E... @ Tw , where Ti is a monomial term representing some path Pi from s to j and
v : w. Then Rm(j) represents the probability that at least one path of {P1 , P2 , .. Pw} is

functioning and so is at least as large as the probability Rk(j) that at least one path of

(P1 , ", P v} r {P1, P2 ... Pw) is functioning. *

5. Computational Results

Several examples will be given in this section to illustrate the efficacy of a version

of the iterative algorithm that makes use of Properties 2 and 3. The quality of the

nondecreasing sequence of approximations to Rsj(G) will also be examined, in particular

as this relates to the discipline (FIFO, LIFO) used for managing the list L. The iterative
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algorithm was coded in FORTRAN 77 and all computations were performed using the

IBM 3081 computer at Clemson University.

Examole 1. This network, having 9 nodes and 19 edges, is taken from [20] and is

shown in Fig. 3. There are 35 s-t paths and 5287 noncancelling terms in Fst(x). As

discussed in Satyanarayana and Prabhakar [20], each noncancelling term corresponds

to an "acyclic subgraph" of G. Despite its small size, this example represents one of the

most complex directed networks whose exact reliability has been reported in the

literature.

The reliabilities Rsj(G) have been calculated using our iterative procedure and the

FIFO/LIFO disciplines. For ease of presentation, the reliability polynomial Fst(x) has

been evaluated with all Pk = p for the particular (s, t) pair indicated in Fig. 3; all edge

failures are assumed to be independent. Fig. 4 shows F(p) = Fst(p, ..., p) plotted versus p

using the FIFO discipline. As expected, the various iterations produce an increasing

sequence F1, ..., F9 of reliability curves that converge to the exact answer in 9 iterations.

Each iteration produces a lower bound on Rst(G) and thus provides a conservative

estimate for the true network reliability. Namely, the exact (s, t)-reliability of the network

is guaranteed to be at least as large as the value specified by the approximation. Notice

that the curves for the fifth through ninth iterations overlap in the figure, thus providing

excellent approximations to Rst(G). Also indicated on Fig. 4 are the cumulative CPU

times (in seconds) required to complete the work through the end of the specified

iteration. Thus, a total of 0.638 seconds were needed to obtain Rst(G), whereas only

0.061 seconds were needed to obtain an approximation that is virtually indistinguishable

over the entire range 0 < p < 1.

Fig. 5 shows analogous information relative to the LIFO discipline. In this case,

twelve iterations were required before convergence was obtained. (Several of the curves

overlap so only 10 approximations are apparent in the figure.) Although the exact

answer was obtained in 0.454 seconds (less than the comparable time for FIFO), the

"e1.o
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LIFO discipline did not give as useful a set of approximations compared to the FIFO

approach.

Example 2. This network, with 13 nodes and 27 edges, is derived from an example

given by Martelli [12]; see Fig. 6. It is considerably more complex than Example 1,

having 70 s-t paths and 34,983 noncancelling terms. Plots of F(p) versus p are shown in

Figs. 7 and 8 for the FIFO and LIFO disciplines, respectively. Again it is observed that the

LIFO method obtains the exact answer faster than the FIFO method. However, the

quality of approximations produced by FIFO is superior to those produced by LIFO.

Indeed, a very close approximation to the exact reliability polynomial is obtained by FIFO

in 1.18 seconds, one-eighth of the time required to find the exact answer using FIFO and

one-sixth of that required using LIFO.

Finally, five random networks on 12 nodes and 30 edges were generated for test

purposes. The characteristics of these networks, together with the number of iterations

required for convergence, are shown in Table 2. In order to compare the quality of the

approximations generated for these examples, we have tabulated the CPU time (in
seconds) required to achieve a relative error of ax% or less (at p = 0.5) in Table 3. The

results for Examples 1 and 2 are also included.

In these random examples the FIFO and LIFO disciplines appear to be comparable

in terms of the time required to obtain the exact answer. Again, however, the FIFO

variant gives a fairly close approximation rather quickly and it completely dominates the

LIFO variant in this respect.
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Table 2

#Noncancelling #Iterations
Network #s-t Paths Terms FIFO LIFO

R1 14 1,263 9 7

R2 28 3,383 11 8

R3 41 7,583 8 10

R4 44 17,919 5 5

R5 34 42,687 10 8

- "r,
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Table 3

CPU (secs) for accuracy within ct%
Example Discipline

0% 1 % 5% 10%

1 FIFO .638 .248 .061 .033
LIFO .454 .454 .083 .083

2 FIFO 9.23 4.26 1.18 .277
LIFO 6.92 6.92 6.92 .847

R1 FIFO .049 .001 .001 .001
LIFO .054 .054 .004 .001

R2 FIFO .380 .076 .006 .003
LIFO .362 .362 .362 .362

R3 FIFO 1.21 .172 .172 .004
LIFO 1.11 .630 .162 .071

R4 FIFO 3.06 .195 .004 .004
LIFO 2.85 2.85 .089 .005

R5 FIFO 5.07 .062 .002 .001
LIFO 5.11 1.58 1.58 .002

.L ox % V, **~
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6. Conclusions

This paper has explored an algebraic structure underlying certain network reliability

problems. A promising iterative algorithm has been developed that allows both exact and

approximate answers to be obtained. Rather than giving simply a single number, this

algorithm produces a reliability polynomial that can then be easily evaluated at any

particular input values Pl, Pr. Also, in the process of determining Rst(G) we also

generate Rsj(G) for all j e N.

Empirical results have shown that the choice of data structure (FIFO, LIFO) can have

a significant effect on the relative efficiency of the procedures as well as on the quality of

the approximations. Whereas the LIFO approach frequently obtains the exact reliability

polynomial faster than the FIFO approach, the latter produces better approximations --

ones that are quite close to the exact answer but are obtained in a fraction of the time.

This desirable feature of the FIFO approach can be explained as follows, assuming that

the Pk are comparable in value. Under a FIFO discipline, nodes are processed in order of

increasing distance from s. Thus, the first time node j is labelled, it is done so relative to a

path with the minimum number of edges. More generally, the FIFO approach ensures that

the "more probable" (fewer edge) paths are incorporated as soon as possible.

Subsequent (longer and less probable) paths contribute, but not as much, to the final

label on node j. On the other hand, a LIFO discipline creates a depth-first rather than a

breadth-first search of the network, and thus "early" approximations can be substantially

improved by the incorporation of later (shorter) paths.

The approximate solutions generated by the iterative algorithm will always produce

(conservative) lower bounds on the exact solution. If greater accuracy is required, such

lower bounds can be used together with a simulation approach, such as Fishman's

sampling procedure [7], that makes explicit use of lower bounds to obtain improved

estimates. Alternatively, these lower bounds can be used in conjunction with existing
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techniques that produce upper bounds on network reliability [22, 25] to obtain an interval

that must enclose Rst(G).

Finally, it should be emphasized that regardless of the list discipline used, some

relatively challenging directed networks from the literature can be solved by our algorithm

with a modest amount of computation. In particular, one example studied had 70 paths.

We are not aware of any existing algorithm that has solved exactly a problem of this

complexity. While the proposed approach appears to have potential, further
experimentation will be necessary before any firm conclusions can be drawn concerning

its general applicability. In order to solve larger, more realistic problems it may be

possible to combine this approach with methods for decomposing the network into more

manageable portions [23,26].

Acknowledgments

This paper benefited greatly from the careful scrutiny of the referees. This research

was supported by the U. S. Air Force Office of Scientific Research (AFSC) under Grant

AFOSR-84-0154. Reproduction in whole or in part is permitted for any purpose of the

United States Government.

REFERENCES

[1] A. AGRAWAL AND R. E. BARLOW, A survey of network reliability and domination
theory, Oper. Res., 32 (1984), pp. 478-492.

[2] A. AGRAWAL AND A. SATYANARAYANA, An O(IEI) time algorithm for computing
the reliability of a class of directed networks, Oper. Res., 32 (1984), pp. 493-515.

-2 "



16

[3] A. AGRAWAL AND A. SATYANARAYANA, Network reliability analysis using
2-connected digraph reductions, Networks, 15 (1985), pp. 239-256.

14] M. 0. BALL, Complexity of network reliability computations, Networks, 10 (1980),
pp. 153-165.

[5] R. E. BARLOW AND F. PROSCHAN, Statistical Theory of Reliability and Life
Testing, Holt, Rinehart and Winston, New York, 1975.

[6] B. CARRE , An algebra for network routing problems, J. Inst. Math. Appl., 7 (1971),
pp. 273-294.

[7] G. S. FISHMAN, A monte carlo sampling plan for estimating reliability parameters
and related functions, Technical Report UNC/ORSA/TR-85/7, University of North
Carolina, Chapel Hill, 1985.

8] M. GONDRAN AND M. MINOUX, Graphs and Algorithms, John Wiley & Sons,
Chichester, 1984.

[9] C. L. HWANG, F. A. TILLMAN AND M. H. LEE, System-reliability evaluation
techniques for complex/large systems - a review, IEEE Trans. Rel., R-30 (1981),
pp. 416-422.

[10] Y. KIM, K. CASE AND P. GHARE, A method for computing complex system
reliability, IEEE Trans. Rel., R-21 (1972), pp. 215-219.

[11] M. LOCKS, Recursive disjoint products: a review of three algorithms, IEEE Trans.
Rel., R-31 (1982), pp. 33-35.

(12] A. MARTELLI, A gaussian elimination algorithm for the enumeration of cut sets in

a graph, J. Assoc. Comp. Mach., 23 (1976), pp. 58-73.

[13] H. MINE, Reliability of physical system, IRE Trans. Circuit Theory, CT-6 (1959), pp.

138-151.

.,



17

[14] T. POLITOF AND A. SATYANARAYANA, An O(IV12) algorithm for a class of planar

graphs to compute the probability that the graph is connected, Math. Oper. Res.,

to appear.

[15] T. POLITOF AND A. SATYANARAYANA, A linear time algorithm to compute the

reliability of planar cube-free graphs, Technical Report, Department of

Quantitative Methods, Concordia University, Quebec, 1985.

[16] J. S. PROVAN, The complexity of reliability computations in planar and acyclic

graphs, Technical Report UNC/ORSAITR-83/12, University of North Carolina,

Chapel Hill, 1984.

[17] J. S. PROVAN AND M. 0. BALL, The complexity of counting cuts and of computing

the probability that a graph is connected, SIAM J. Comput., 12 (1983), pp.

777-788.

[18] A. ROSENTHAL, Computing the reliability of complex networks, SIAM J. Appl.

Math., 32 (1977), pp. 384-393.

[19] A. SATYANARAYANA AND M. CHANG, Network reliability and the factoring

theorem, Networks, 13 (1983), pp. 107-120.

[20] A. SATYANARAYANA AND A. PRABHAKAR, A new topological formula and rapid

algorithm for reliability analysis of complex networks, IEEE Trans. Rel., R-27

(1978), pp. 82-100.

[21] A. SATYANARAYANA AND R. K. WOOD, A linear-time algorithm for computing

K-terminal reliability in series-parallel networks, SIAM J. Comput., 14 (1985), pp.

818-832.

[22] J. G. SHANTHIKUMAR, Simple bounds for network reliability, Technical Report,

School of Business Administration, University of California, Berkeley, 1984.

[23] D. R. SHIER, A decomposition algorithm for optimality problems in tree-structured

networks, Discrete Math., 6 (1973), pp. 175-190.



18

[24] D. R. SHIER, Iterative algorithms for calculating network reliability, in Graph
Theory with Applications to Algorithms and Computer Science, Y. Alavi et al.

(eds.), John Wiley & Sons, 1985, pp. 741-752.

[25] A. SHOGAN, Sequential bounding of the reliability of a stochastic network, Oper.
Res., 24 (1976), pp. 1027-1044.

(26] R. E. TARJAN, Fast algorithms for solving path problems, J. Assoc. Comp. Mach.,
28 (1981), pp. 594-614.

[27] L. G. VALIANT, The complexity of enumeration and reliability problems, SIAM J.

Comput., 8 (1979), pp. 410-421.

[28] R. K. WOOD, A factoring algorithm using polygon-to-chain reductions for
computing K-terminal network reliability, Networks, 15 (1985), pp. 173-190.



DfiC-


